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Today’s air traffic management system is not expected to scale to the projected 

increase in traffic over the next two decades. Enhancing collaboration between the 
controllers and the users of the airspace could alleviate air traffic flow problems. We 
summarize a new concept that has been proposed for collaborative air traffic flow 
management, the problems it is meant to address, and our approach to evaluating the 
concept. We present our initial simulation design and experimental results, using several 
simple route selection strategies and traffic flow management approaches. Though our 
model is still in an early stage, these results have revealed interesting properties of the 
proposed concept that will guide our continued development, refinement of the model, 
and possibly influence other studies of traffic management elsewhere. Finally, we 
conclude with the challenges of validating the proposed concept through simulation and 
future work. 

1. Introduction 
Air traffic in the United States of America (U.S.A.) is forecasted to double or triple by the year 2025 

(Federal Aviation Administration, 2000). Recent simulations (Grabbe, Sridhar, & Mukherjee, 2007) of this 
increase in demand using current air traffic management techniques yielded an increase in average delay 
per flight from four minutes to over five hours – a clearly unacceptable situation. Accordingly, the National 
Aeronautics and Space Administration (NASA) is currently exploring several new concepts that may 
alleviate air traffic problems. One such area is Collaborative Air Traffic Flow Management (CATFM). 
Today in the U.S.A., the Federal Aviation Administration (FAA) makes the bulk of traffic flow 
management decisions without consulting the airlines. In CATFM, the airspace users are given more 
opportunities to express their preferences, choose among options, and take proactive reaction. In theory, 
this will result in decreased workload for the FAA, increased airline satisfaction, and more efficient traffic 
flow management. 

But will the CATFM concept really work in practice? Will the airlines take advantage of their new 
opportunities for action, or will they be passive and let the FAA continue to solve traffic problems 
independently? Will increasing airline involvement decrease the FAA’s workload, or just change it? Will 
the options available to the airlines enable them to substantially increase their benefit, in particular when 
many factors still remain out of their control? Will the uncoordinated actions of the individual airlines 
increase the efficiency of the system as a whole, even though each airline is only concerned with their own 
gain? Might potential efficiency gains be offset by the actions of rogue operators, who purposely seek to 
interfere with the operations of a competitor? 

Given the current stage of development of the CATFM concept, and the fact that it involves many 
independent entities with their own beliefs and desires, we feel that the first step to answering some of 
these questions is through agent-based modeling and simulation. Our goal is to build a simulation of a 
future concept of CATFM operations so that strengths and weaknesses can be evaluated long before more 
costly human in the loop simulations or limited field deployments are attempted. Our simulation is still in 
an early stage, with several more years needed for a complete, detailed model, but we have already found 
several interesting and important properties of the CATFM concept. 

Though our study is certainly most relevant to air traffic flow management (ATFM), aspects may relate 
to other forms of traffic. Our methodology (see Section 4.2) can be applied to other concepts of operation. 
Many of the basic concepts (e.g., choosing routes, traffic congestion, independent and uncoordinated 
agents) are the same and the overall structure is similar (see Section 2.1). However, there are important 
differences. Perhaps most the important is that aircraft must remain within a narrow range of speeds during 
flight – stopping is out of the question, only a slight speed reduction is possible without stalling, and 
significant speed increases can lead to instability. This greatly constrains the actions that are available, and 
is further limited by the amount of fuel onboard (which is minimized to reduce operating costs). CATFM 
distributes some elements of decision making, but ATFM generally has more centralized control than other 
forms of traffic management, Finally, a significant portion of air traffic is comprised of fleets (i.e., airlines) 
– essentially cabals of drivers who are interested in cooperating for the common good of the company. 

When viewed abstractly, CATFM is an excellent domain to develop and evaluate system designs that 
could be applied in other agent-based systems, particularly those that model people. The constraints of air 
traffic management are essentially a competition for limited and shared resources. The agents in the system 
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are neither wholly cooperative (which is rarely realistic when agents are self-interested), nor entirely 
competitive (which can lead less efficient overall performance). Rather, we have two types of entities: a 
controlling entity, which seeks to maximize some global property such as system performance, and 
participating operators, which seek to maximize their own utility. The challenge is to design a robust 
system of constraints so that the actions of the participants work towards maximizing the desired global 
property. The utility functions of the participants are beyond our control, may include antagonistic 
elements, and are generally unknowable, complicating matters. Yet, this situation occurs often in practice, 
not only in government-controlled situations, but also in any system with central authority, such as 
companies, organizational bodies, and games of all types. 

We begin with a description of ATFM and related work. We describe the main features of the CATFM 
concept of operations and the observed operational problems it was meant to address. Our approach to 
developing a simulation of this concept of operations is presented, and we describe our simulation thus far. 
We discuss the comparative results of different CATFM approaches and different airline strategies. We 
conclude with an analysis of these experiments, and present our goals for future development of the 
simulation. 

2. Background 
2.1. Introduction to ATFM 

Air traffic control (ATC) is a service that provides safe, orderly, and efficient flow of aircraft operating 
within an airspace. Generally, an Air Traffic Service Provider (ATSP) is the authority responsible for 
providing air traffic control; in the U.S.A., the FAA is the ASTP for the National Airspace System (NAS). 
The FAA has four types of facilities that participate in ATC. ATC towers manage the aircraft arriving, 
departing, and taxiing on the ground. Terminal Radar Approach Control Facilities (TRACONs) control 
airspace approximately within thirty miles of an airport. Air Route Traffic Control Centers (ARTCCs) are 
responsible for the remainder of controlled airspace in the NAS. Our interest in ATFM is primarily at this 
level, which consists mostly of “en route” traffic flying on instrument flight rules (meaning they rely on 
instrumentation and ATSP guidance). En route traffic usually follows predefined air routes (essentially 
“sky highways”) in order to increase the predictability of the traffic flow. There are twenty such ARTCCs 
in the continental United States, and each ARTCC is further subdivided into sectors. At the national level, 
the Air Traffic Control System Command Center (ATCSCC) develops strategic plans for traffic flow 
management throughout the NAS. It has final approval of all national traffic management initiatives (TMIs) 
and is responsible for resolving inter-facility issues.  

Air Traffic Flow Management (ATFM) is a system level function within ATC to manage the flow based 
on capacity and demand. ATFM is the responsibility of a Traffic Management Unit (TMU) within each 
ARTCC and at the ATCSCC. The ATCSCC develops strategic plans to ensure balanced flow throughout 
the NAS over a planning horizon of two to eight hours. The center TMUs develops tactical plans to manage 
air traffic within their local airspace over a planning horizon of up to two hours that are consistent with any 
relevant ATCSCC initiatives. The TMUs constantly monitor for potential conditions that could reduce 
airspace capacity such as adverse weather and for excessive traffic demand that could overload a sector 
controller’s ability to safely handle traffic. For example, a TMU may identify a Flow Constrained Area 
where a capacity-demand imbalance may occur due to severe convective weather. The TMU would then 
analyze which type of traffic management initiative should be invoked to alleviate the traffic imbalance. 
Since TMIs may affect adjacent centers, either directly or through ripple effects, ATCSCC approval is 
needed before invoking a TMI. TFM issues are discussed in a bi-hourly planning teleconference, involving 
representatives from the ATCSCC, each ARTCC, and airlines.  

A variety of TMIs are available to the FAA, depending on the nature of the traffic flow problem; we 
describe some commonly used TMIs. A re-route procedure directs an aircraft onto a new route to avoid a 
problem area, such as a severe thunderstorm or congested airspace. This is the only TMI we have 
implemented in our current simulation. Re-routing can impact both ATC and NAS users: workload of the 
sector controllers receiving the diverted traffic increases, expected aircraft arrival times may change, and 
more fuel may be needed for the aircraft to follow the new route. A Ground Delay Program (GDP) delays 
aircraft at the departure airport in order to manage the demand at the arrival airport. Flights are assigned 
new (delayed) departure times, thus changing their expected arrival time at the impacted airport. GDPs are 
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implemented when capacity at an arrival airport has been reduced for a sustained period, due to weather or 
excessive demand. Miles-in-Trail (MIT) restrictions enforce a certain separation between aircraft transiting 
through some point (e.g., an airport, sector boundary, or route). MITs are used to apportion traffic into a 
manageable flow, as well as provide space for addition traffic (merging or departing) to enter the flow of 
traffic. A MIT procedure can cause the traffic flow to back up, potentially resulting in a larger MIT 
restriction in the upstream center (known as a passback) or delayed departures.  

Airlines manage their fleet of aircraft in an Airline Operations Center (AOC). The AOC typically has a 
position called the ATC coordinator that monitors the TMIs issued by the TMUs and ATCSCC and 
participates in the planning teleconference to make their concerns visible to the FAA. A major thrust of the 
CATFM concept is to increase the role of the AOC in ATFM, as detailed in Section 4.1). 

2.2. Agent-based ATFM Simulations 
The Airspace Concept Evaluation System (ACES) (Sweet, Manikonda, Aronson, Roth, & Blake, 2002) 

is a distributed agent-based simulation of the NAS that uses a “activity centric paradigm”. ACES supports 
the Department of Defense’s High Level Architecture (HLA), which has enabled the integration of several 
simulations into the overall system. As ACES is focused on the entire NAS, the simulation includes ATFM 
(Couluris et al., 2003), but is not its only focus. In ACES, individual reasoning entities are represented as 
agents, as well as the different simulation layers connected through HLA. 

IMPACT (Intelligent agent-based Model for Policy Analysis and of Collaborative Traffic flow 
management) is a swarm-based agent model of FAA agents and airline agents, simulating several possible 
responses to capacity reductions: no TMIs, GDPs without information sharing, and GDPs with shared 
airline schedules. (Keith C, Cooper, Greenbaum, & Wojcik, 2000). In each scenario, the FAA agents 
decide to impose GDPs or not based on predefined policies, and the airline agents choose actions that 
minimize the estimated cost to their operations. As expected, their simulation measured the best 
performance when schedule information was shared, but surprisingly found that GDPs without shared 
information (as occurs in today’s operations) resulted in a greater average cost per flight than when no 
TMIs were instituted. 

STEAM (Tambe, 1997) has been used to model a collaborative system for real-time traffic 
synchronization (Nguyen-Duc, Briot, Drogoul, & Duong, 2003). Real-time traffic synchronization is the 
work of the individual sector controllers as they manage flights that run through multiple sectors, and is 
complementary to our focus on the traffic flow level. Unlike our model, where the collaboration also 
includes the airspace users, only the sector controllers and a few higher-level coordinating entities 
coordinate to find solutions to the ATFM problems.  

The Man-Machine Integrated Design and Analysis System (MIDAS) is an agent-based model of human 
performance when coupled with machine interfaces. MIDAS has been applied to ATFM (Corker, 1999), 
but at a different level of granularity than in our work, as it emphasizes the capabilities and limitations of 
human cognitive ability instead of complex decision making at a more abstract level. 

3. Issues, Controversies, Problems 
3.1. Characterizing Operations and Issues through Field 

Observations 
In order to more accurately characterize the problems present in air traffic flow management today, and 

to identify likely challenges in future operations, field observations were conducted at several operational 
centers (Husni Idris, Evans, Vivona, Krozel, & Bilimoria, 2006). A diverse set of collection of facilities 
were included in these observations to provide a wide scope of operational characteristics and 
corresponding issues, including five TMUs, five AOCs, and the ATCSCC. The five TMUs included centers 
of varied geographical size, assorted weather patterns, and differing dominant traffic patterns (such as 
terminal or overflight operations). The AOCs included both large and small carriers, with different 
operational models and customers (such as passenger or cargo). Finally, the ATCSCC provided a unique 
perspective of air traffic flow management across the country.  

These field observations supported the development of the CATFM concept of operations primarily in 
three ways. First, they made it possible to characterize the operational situations that result in air traffic 
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flow constraints. These operational situations typically stem from two immediate causes; either from a 
decrease in airspace capacity (e.g., due to weather or airspace restrictions), or through an increase in 
demand (e.g., from pop-up traffic, overscheduling, or from traffic rerouted from another area). Second, 
once the flow constraint situations and their immediate causes were identified, the underlying operational 
issues that lead to the inefficient handling of these situations (detailed in the following section) could be 
identified as well. Finally, these observations of how the ATFM participants actually did their work provide 
a valuable record of work practice (see section 4.2). By analyzing how the work is done, potential solutions 
(see Section 4.1) that could feasibly be adopted were developed, and a realistic agent-based model of 
ATFM operations can be built. 

3.2. Identified ATFM Issues 
The primary finding from the field observations was that the current ATFM system limited the amount 

of possible collaborative problem solving. Two factors dominate the source of these issues. First, the 
sharing of information between the FAA and airlines is limited. This means that the bulk of the planning 
must be done without accurate information about the other entity’s view of the current state, priorities and 
plans. (These three elements correspond to the belief, desire and intention framework and validate the 
choice of an agent-based model for simulation). Second, the bulk of the problem solving activities falls 
upon the FAA, but the TMUs face workload limitations that in turn limits the solutions they can 
realistically pursue. We present a summary of these findings: the complete list can be found in (H. Idris, 
Vivona, Penney, Krozel, & Bilimoria, 2005) 

3.2.1. Inaccurate Problem Assessment 
Efficient management of traffic flow issues begins with an assessment of the problem. Inaccurate 

assessments of either the demand or the capacity can lead to problematic problem assessments, including 
over- or underestimating the problem severity, missing a problem or incorrectly identifying a non-existent 
problem. Factors that lead to inaccurate demand assessments include inaccurate prediction of pop-up 
traffic, changes in airline flight intent (e.g., change in departure time, flight plan or cancellations), and 
displacement of traffic from flow constraints elsewhere. Factors that lead to inaccurate capacity 
assessments include incorrect weather and airspace restriction predictions. In addition to the inaccuracy of 
assessments, the FAA and airlines are likely to have divergent assessments, resulting in inconsistent plans. 

3.2.2. Differing Evaluations of Identified Problem 
Once the traffic flow problem is identified, the FAA and the airlines are likely to have differing 

evaluations of the problem. After safety, they have divergent concerns. The FAA will seek to minimize the 
affect of the problem on the NAS and limit the amount of workload for the controllers. The airlines, on the 
other hand, are not concerned with the NAS except as it affects their own flights (e.g., they are not seeking 
to minimize the negative effect on competing airlines). Instead, the airline seeks solutions to problems that 
adhere to their business model, often with a goal of minimizing costs (such as fuel usage) while limiting the 
negative effect on the customers. Moreover, different carriers will have different business models, therefore 
regarding cost, reliability and on-time service differently. Thus, even with a consensus on the traffic flow 
problem, different entities will often prefer different solutions. 

3.2.3. Limited Mitigations 
The TMUs and the ATCSCC have a limited set of TMIs to choose from when seeking mitigations to a 

traffic flow management issue. These TMIs are typically coarse-grained and are applied uniformly to all 
users. As such, the initiatives are often overly restrictive, and because they are not selective, may impact 
user operations unevenly. 

3.2.4. High TMU Workload 
Two factors typically contribute to a high TMU workload when the disruptions to the NAS grow more 

severe. First, the reliance on direct synchronous communications such as telecons and phone calls increases 
the cost of communication, decreasing both the time available for such communications and for other 
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activities. Secondly, actions at the level of an individual flight (such as rerouting) greatly increase the 
quantity of tasks that must be performed by the TMU. The end result is that TMU workload becomes a 
limiting factor, and restricts the possible solutions the FAA can pursue. 

3.2.5. Limited Coordination between FAA and Airlines 
Due to the problems with communication and TMU workload, coordination between the FAA and the 

airspace users decreases as problems become more severe. Unfortunately, this means there is little or no 
coordination exactly at the times when it is needed most. As such, the FAA and the AOC assess, evaluate 
and plan largely independently from one another. This is exacerbated by the relative unpredictability of 
both parties, potentially leading to a double penalty for either party; the TMU may choose unnecessary 
mitigations and be unprepared for the actual resulting problem, and the AOC may independently avoid one 
restriction only to be impacted by an unanticipated mitigation. In addition, due to the decrease in 
communication caused by a high workload, the FAA may be late in notifying all interested parties that a 
restriction has been removed, resulting in some parties unnecessarily avoiding a problem that no longer 
exists. 

4. Solutions and Recommendations  

4.1. CATFM Concept of Operations 
The CATFM concept of operations recommends several changes to the ATFM process to address the 

issues presented in Section 3.2. Most of these changes fall under the following three categories, listed by 
order of increasing emphasis. First, more automation must be used to reduce the workload of TMUs. This 
automation may reduce the need for the TMU planners to perform mundane tasks and lessen the cost of 
communication. Second, more information should be shared between the ATSP and the users. By doing so, 
assessments can be made with more complete information, common assessments are possible, and since the 
information used to make decisions is shared, actions are more predictable. Finally and most importantly, 
when possible, the AOCs should be allowed to participate directly in the traffic flow management process, 
shifting the burden from the ATSP to the users. 

We summarize the four phases of the ATFM process in the CATFM Concept of Operations below; a 
more complete description can be found in (H. Idris et al., 2005) 

4.1.1. Common Problem Identification 
As described previously, ATFM problems are caused by situations where the demand for the airspace 

exceeds its capacity. Each element is best predicted by a different party: demand, by the airspace users who 
create it; and capacity, by the ATSP, as it is an assessment of the ATSP’s ability to manage traffic in the 
effected area. This leads naturally to a collaborative situation where both parties share information about 
their respective components to produce a more accurate problem assessment, and to minimize the 
divergence of problem assessments. 

4.1.2.  Shared Impact Assessment 
The ATFM issues identified in the previous phase are constraint violations that may be rectified through 

a variety of actions, each of which will have different impacts on airline and ATSP operations. 
Automatically translating the problem assessments into potential impacts will greatly aid the planning 
process of the AOCs and TMUs. Without it, as in today’s system, uncertainty increases, leading to overly 
conservative planning. By establishing a shared impact assessment, options can be evaluated more 
accurately and better contingency plans can be developed. Moreover, if early indications of probable TMU 
actions are provided, the AOCs may be able to adjust their plans to coincide with such actions, potentially 
reducing or eliminating the need for the proposed TMU action. 

4.1.3. Traffic Flow Planning with AOC Input 
Once a possible set of ATFM actions have been identified, along with their impact, a specific ATFM 

plan is instantiated that adequately addresses the traffic flow problem. Instead of a planning decision being 
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made unilaterally by the TMU (as occurs today), the AOCs can provide preferred solutions. These become 
additional inputs to the TMU’s planning process, allowing for the accommodation of user preferences when 
they do not violate other constraints. In addition, when the TMU workload allows it, the AOCs can suggest 
alternative plans that may result in an overall better solution. 

4.1.4. Joint Plan Implementation 
Once an ATFM plan with a set of actions has been chosen, they must be instantiated at the level of 

individual flights. In some cases, particularly with reroutes, choices remain to be made, such as which 
flights should be given the new route. When possible, the airlines should be given the choice of which 
flights are impacted by the ATFM action according to their own business plan. This both reduces the 
workload of the TMU by shifting the burden of implementation to the AOC, and also allows the airline to 
maximize their own benefit by directly choosing the most acceptable options. 

4.2. Approach 
We have built an initial agent-based simulation with Brahms (Clancey, Sierhuis, Kaskiris, & Hoof, 

2003). Brahms is a modeling and simulation environment for analyzing human work practice and for 
developing intelligent software agents to support work practice in organizations. Brahms can run in 
different simulation and runtime modes on distributed platforms, enabling flexible integration of people, 
hardware-software systems, and other simulations. Brahms was originally conceived as a business process 
modeling and simulation tool that incorporates the social systems of work, by illuminating how formal 
process flow descriptions relate to people’s actual located activities in the workplace (Clancey, Sachs, 
Sierhuis, & Hoof, 1998). To simulate human behavior at the work practice level, one must model how 
people work together as individuals in organizations, performing both individual and teamwork activities. 
The Brahms language is unique in that it models not only individual agent and group behavior, but also 
systems and artifact behavior, as well as the interactions of people, systems, objects, and the environment. 
Most other multiagent languages leave out artifacts and the interaction with the environment, making it 
difficult to develop a holistic model of real-world situations (c.f. (Wooldridge & Jennings, 1995)). Brahms 
is an agent language that operationalizes a theory for modeling work practice, allowing a researcher to 
develop models of human activity behavior that corresponds with how people actually behave in the real 
world (Sierhuis, 2001). 

The methodology used in OCAMS (Clancey et al., 2007) describes how to design and simulate a future 
work system. The process begins with detailed observations of work practice, which is used to build a 
model of current operations. After model validation, a new concept of operations is developed, and a 
simulation of the future work system is created using validated components of the model of current 
operations whenever possible. After testing the concept in implementation, the process repeats. We have 
adapted this methodology to our circumstances, taking advantage of the pre-existing CATFM concept of 
operations and work practice observations. We are developing the model iteratively, building successively 
more accurate models from increasingly detailed sources of information. At every stage we evaluate 
aspects of the concept of operations, modify the concept according to the findings from our simulation, and 
then increase model fidelity in the next stage. 

In our current, initial stage, we have built a rudimentary model of ATFM (see Section 4.3) using second-
hand sources of information such as the original work practice observations, other ATFM literature, and the 
concept of operations itself. Subject matter experts have validated the design and behavior of our current 
model. In the next stage, we will interview subject matter experts and incorporate their conception of work 
practice into the model. This will allow us to fill in details not discernable from the recorded observations 
of work practice. To validate the model at this stage, historical situations will be simulated and the results 
will be compared with the historical outcomes. Likewise, historical data may also be used to infer models 
behavior, either by intuition or through data mining techniques. In the third stage, we will perform new 
observations of work practice, enabling us to build a detailed model at the level of individual (rather than 
organizational) participants in the ATFM process. The model at this stage can also be validated by 
comparing the simulated behavior to the behavior observed in the actual system. Subsequent evaluation of 
the concept will require human subjects to participate in the CATFM process, with humans and agent 
proxies participating in a human in the loop simulation. 
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4.3. Initial CATFM Simulation Design 
We have created a simplified model of ATFM in our initial simulation, concentrating on the Joint Plan 

Implementation phase (see Section 4.1.4) where routes are assigned to flights. In order to simplify this 
selection process, we have redefined capacity to be a property of a route, rather than a sector, and assumed 
that the routes are independent. This also makes the problem more like other forms of traffic that tend to 
have route-based capacities. Airspace conditions are held static throughout the simulation and the flight 
schedules are fixed, though these parameters are known only to the FAA, and demand on a given route will 
fluctuate according to previous selections. We have abstracted the details of staggering flights and airport 
limitations, dealing with all flights simultaneously within a given time window. 

 
 

Figure 1. Agent architecture. 

Figure 1 provides an overview of our agent current architecture. We have built our initial model at the 
organizational level, with each organization (i.e., TMUs and AOCs) modeled as single agents. Each agent 
(TMU or AOC) has different responsibilities, with route selection by either the TMU agent or the AOC 
agents (see below). The AOC agents provide the TMU with their flight schedules and the value of each 
flight. The TMU agents informs the AOC agents of the current status of the airspace by aggregating the 
current demand on a given route, comparing this with the capacity, and broadcasting the route status to the 
(under capacity, at capacity, or oversubscribed) to the AOC agents. The TMU also has the responsibility of 
ensuring that no route goes above capacity; it does this by preventing all flights from accessing a route if 
demand exceeds capacity when the planning phase is over. 

For each origin-destination pair, we created three routes: a direct route and two alternate routes, 1.25 and 
1.5 times the length of the direct route. The capacities of these routes vary, with typically the direct route 
having insufficient capacity for all the traffic. Our fundamental question is: how will the CATFM concept 
perform in this simplified model? In order to answer this question, we made several variations of the 
model, one that uses a CATFM approach and several other approaches for comparison: 

• Blue Sky (BS): In this variation, all capacities were set to infinite so every flight could take the 
direct route. This is not a viable approach but an upper bound on performance that we use as a 
baseline. 

• Current Operations (CO): Here the TMU agent is responsible for the route selection. It puts flights 
on the best available routes (i.e., under capacity routes), but does so in an arbitrary order without 
inspecting the flight value. This approach is closest to the current operations where the FAA must 
make route assignments without input from the airlines. 

• Global Optimum (G): Again, the TMU agent makes the route selection as in the Current Operations 
approach, but does so in order of greatest flight value. This greedy algorithm produces the best 
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overall system performance, according to our metrics, but may give preferential route assignments to 
one airline over another. 

• Airline Planning (AP): Here the responsibility for route selection falls upon the AOC agents. After 
the TMU agent gives feedback on the route status, the AOC agent may choose a new route or 
continue to request the shortest route. This continues for several cycles until the time for planning is 
exhausted. We developed several simple strategies for the AOC agents: 
o Aggressive (A): An AOC agent with the Aggressive strategy will always request the best route 

for every flight, regardless of the situation. 
o Moderate (M): An AOC agent with the Moderate strategy will request the next best route for 

some of its flights when faced with an overcapacity situation. 
o Conservative (C): An AOC agent with the Conservative strategy will request the worst route 

for some of its flights when faced with an overcapacity situation. The assumption is that the 
worst route is the least likely to fill up, so the conservative AOC agent attempts to forgo a 
chance at a better route assignment in exchange for a greater likelihood of finding an available 
route. 

4.4. Experiment on a Local Traffic Scenario 
We created a local traffic scenario (see Figure 2) that corresponds to traffic generated by three major 

carriers among several airports in the southwest of the U.S.A. The schedules and aircraft types were chosen 
based on our observations of the flight schedules of these carriers. Information on connecting crew, 
passengers, and route capacities were not available, however, so we used our best judgment based on 
nominal conditions, expected passenger behavior and operational patterns. In all cases, sufficient aggregate 
capacity was available among the three routes such that every flight could have some route assignment.  

 

 
Figure 2. Scenario involving seven airports (in Google Earth). Only the best route is displayed; larger 

arrows and airport symbols indicate higher levels of traffic. 

For a specific flight F of airline AF, we define the following quantities: 
 
pc = passengers with connecting flights 
pu = passengers without connecting flights 
cc = onboard crew members a connecting flight 
tF, = the actual flight time of F, in minutes 
tB, = the optimal flight time of F (from the Blue Sky simulation), in minutes 
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Each flight is assigned a flight value, which is a heuristic measure of the importance of the flight to the 
airline. We define vF , the flight value of F, as 

 
 vF = pu + 3pc + 5cc (1) 
 
When F is assigned a route, we calculate dF, the delay for flight F, as follows: 
 
 dF = tF - tB (2) 
 
When F is not assigned a route, we assume a standard sixty minutes of delay in a later stage that we do not 
simulate. Traffic demand naturally rises and falls throughout the day, so we assume that the level of 
demand falls significantly after our simulation ends. 

Finally, we seek to measure the total incurred passenger delay incurred by flight F, either through an 
immediate delay or through missed connections. We assume that when a passenger with a connecting flight 
is delayed, on average, that passenger will experience an additional two-hour delay. When connecting crew 
members are delayed, their personal delay is not counted (since they are not considered passengers in our 
simulation), but they are likely to delay the departure of their connecting flight, which in turn impacts many 
passengers. Therefore, we assume on average, any delay of a connecting crew member results in a total of 
five hours of passenger delay. Combining this with the above formulae, we calculate the total incurred 
passenger delay incurred by flight F, dT, in minutes, as 

 
 dT = (pu * dF) + (pc + dF) + 60pc + 300cc (3) 

 
The local traffic scenario, when simulated with several different TFM approaches and AOC strategies, 

yielded some surprising results. When given a mix of strategies, the Airline Planning approach performed 
poorly. This is shown in  

Figure 3, where the light blue bars indicate delay incurred by selecting an alternate route, and the dark 
red bars indicates delay from failing to make a route assignment. Figure 4 shows that the Airline Planning 
approach is highly sensitive to the strategies employed by the AOC agents. The best mix of airline 
strategies outperforms the Current Operations approach (see Figure 5), indicating a potential for 
improvement under the CATFM concept. Further observation reveals that the Aggressive strategy in 
particular is disruptive to the system as a whole, and typically a very poor strategy in terms of our 
passenger delay metric. Figure 6 shows that in some cases, the quality of the solutions found in the Airline 
Planning approach is affected by the number of planning cycles. 
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Figure 3. Comparing TFM Approaches on the Local Scenario. 
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Figure 4. Interactions between AOC Strategies. 
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Figure 5. Best AOC Strategy Mix Compared with Current Operations Approach. 
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Figure 6. Effect of Additional Planning Cycles with Airline Planning Approach. 

4.5. Single Origin-Destination Experiment 
In our previous experiment, a given AOC agent would use the same strategy on all origin-destination 

pairs, regardless of the situation. In reality, an airline is likely to use several strategies, matching them to 
the situation at hand. Since we aggregated the results over the origin-destination pairs, we could see how a 
strategy performed overall but could not isolate the specific situations where it performed well or poorly. 
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We also wanted to evaluate new approaches that could address concerns that arose from our previous set of 
experiments, leading to the following additions: 

• Mixed (M): This combines the Airline Planning and Optimal approaches. The airlines schedule their 
flights as before in the Airline Planning approach. Once the planning phase is over, however, the 
TMU agent will assign any unassigned flights using the Optimal approach. This ensures that any 
unused capacity will be utilized by flights that the AOC agents failed to choose routes for. 

• Equitable (E): This is a variant of the Optimal approach. Each AOC agent gives a ranking of their 
flights but does not supply flight values. The TMU agent gives top priority to first-ranked flights, 
followed by second-ranked flights, and so on. This gives each airline an equal share of each route’s 
capacity, regardless of the value of their flights. 

We created three scenarios with the same origin-destination, with one primary route and two alternates 
as defined previously. In all three scenarios we had three AOC agents, each with four flights to schedule. 
The scenarios varied in the amount of capacity available: in the Excess Capacity scenario, each route could 
accommodate five flights; in the At Capacity scenario, each route could accommodate four flights; in the 
Under Capacity scenario, each route could accommodate three flights. Therefore, all flights could be 
assigned a route on the At Capacity and Excess Capacity scenarios, but this was not possible in the Under 
Capacity scenario as demand exceeded capacity. 

We ran each scenario with all combinations of strategies for the three AOC agents using both the Airline 
Planning and Mixed approaches, resulting in twenty-seven runs for each. From these runs, we aggregated 
the situations where one strategy was used against another. For each pair of strategies, we calculated the 
average incurred passenger delay per flight as well as percentage of time that one strategy outperformed the 
other. Table 1 and Table 2 show the delay average metric and winning percentage, respectively, when using 
the Airline Planning approach; Table 3 and Table 4 show the delay average metric and winning percentage, 
respectively, when using the Mixed approach. 

Several patterns emerge from this analysis. The Aggressive strategy is a poor choice when using the 
Airline Planning approach, consistent with earlier findings, because its insistence on the best route makes 
that route unusable, leaving its flights unassigned. However, head-to-head performance improves for the 
aggressive AOC agent when there is excessive capacity, as AOC agents with more flexible strategies (i.e., 
Moderate or Conservative) make room for the aggressive airline. When the Mixed approach is used, the 
Aggressive strategy does even better. In situations with adequate capacity, the Aggressive strategy 
performs best overall. The Aggressive strategy will either succeed in putting all of its flights onto the best 
route, or is will succeed in preventing any other airline from using the best route (though stranding its own 
flights in the process), thus making the best route available for its flights when the TMU assigns the 
remaining flights. However, when there is not sufficient capacity, this strategy performs poorly because not 
all of its flights will be assigned. 

The Conservative strategy performs poorly compared with the other strategies. This is not surprising, as 
it prefers the worst route. However, it is generally not favorable to use the same strategy as another AOC 
agent because both AOCs will create demand on the same routes. In our experiments, the Conservative 
strategy fared better in terms of our delay average metric when matched against a moderate opponent, and 
vice versa. In particular, in the Under Capacity experiment, the Conservative strategy is the best when 
faced with a moderate opponent. 

Finally, we created a larger scenario with a primary and secondary routes defined as before, but each 
with a capacity of forty flights, and three airlines with forty flights each. Table 5 shows the results of 
experiments on this scenario in terms of the total passenger delay metric. In this case, the Equitable 
approach performed nearly as well as the Optimal approach; it is worth noting that the distributions of 
flight values were comparable among the three airlines. 
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Table 1. Average Incurred Passenger Delay (minutes) per Flight with Airline Planning Approach 
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Table 2. Head-to-Head Winning Percentage with Airline Planning Approach 
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Table 3. Average Incurred Passenger Delay (minutes) per Flight with Mixed Approach 
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Table 4. Head-to-Head Winning Percentage with Mixed Approach 

 
 

 A1 A2 A3 Total 
Current Operations 3552 4332 2939 10823 

Optimal 3314 2806 3300 9420 
Equitable 2969 3407 3073 9449 

Table 5. Comparing Current Operations, Optimal, and Equitable Approaches 



A Multiagent Simulation of Collaborative Air Traffic Flow Management 
 

Page 14 

5. Conclusion 
We evaluated several approaches to ATFM, and for the Airline Planning and Mixed approaches, also 

evaluated several simple route selection strategies. Of these, the Moderate strategy is intuitively the most 
appealing, and had the best overall performance in our experiments. In contrast, the Conservative strategy 
did not perform as well; nonetheless, it was the best choice when competing against moderate AOCs in 
situations without excess capacity. This theme was repeated throughout our experimental results; in nearly 
every case, the best strategy could not be chosen independently, as it was dependent on the strategies used 
by the other AOC agents. Finally, the Aggressive strategy worked very well with the Mixed approach when 
there was adequate capacity, casting doubt on the suitability of the Mixed approach. The Aggressive 
strategy also did well in the when other AOC agents moved their flights off the best route, thus 
accommodating the aggressive AOC. 

In our evaluation of the CATFM concept, we observed that nearly all the approaches that incorporated 
the flight value yielded better results than the Current Operations approach. This supports the claim that 
utilizing user preferences in ATFM should lead to better solutions. However, this was not the case in all of 
our experimental results; certain mixes of strategies with the Airline Planning approach produced 
unacceptably poor results. Moreover, we did not observe any indication that increasing AOC involvement 
would reduce FAA workload. In the Optimal and Equitable approaches, the TMU agent continued to 
perform route selection, and with additional criteria, so this represents an increase in workload. In the 
Airline Planning approach, the TMU did not perform route selection but the results were often 
unacceptable; in the Mixed approach, the results were good, but often the TMU would still make many 
route selections and inadvertently rewarded aggressive behavior. Therefore, automation, not collaboration, 
is most likely the key to reducing FAA workload. This is consistent with the CATFM concept of 
operations. Finally, the AOC agents usually found better solutions when more planning cycles were 
available. This puts an emphasis on the earlier stages of the CATFM process, which we did not simulate: 
the earlier situational information is available, the better the likely solution is. 

In the end, the challenge of refining the CATFM concept will not be designing effective AOC agent 
strategies, as in practice, they will be determined by the airlines and our of our control. Each airline is 
likely to have a somewhat different strategy, geared towards their private business model and influenced by 
the people executing it. Nor is it reasonable to assume that these strategies would necessarily be optimal in 
all cases. Rather, the challenge is to design a system that incentivizes behavior yielding desirable system 
performance. In game-theoretical terms, this amounts to redesigning the game itself, rather than the player 
strategies. In our experiments, the Airline Planning approach was too vulnerable to aggressive AOC agents; 
likewise, the Mixed approach often incentivized the Aggressive strategy. The Optimal approach is unlikely 
to be deployable in practice, as it would be difficult to create a single objective utility function (flight value 
in our experiment)s over all airlines. Based on our experiments, the Equitable approach is the most 
promising, as it produced results on par with the Optimal approach (when airlines had comparable flights), 
but did so without relying on a universal flight evaluation. 

6. Future Research Directions 
We have completed the initial stage of development and will continue to expand the CATFM model 

according to the methodology presented in Section 4.2. We have begun work on the next stage, expanding 
our model to capture the breadth of the CATFM concept of operations, covering all the phases presented in 
Section 4.1. Our current study simulated the instantiation of the ATFM plan (namely the selection of 
routes), which was necessary to evaluate the result of the process; however, as earlier phases produce 
inputs to later phases, it may be that the earlier phases are the ones with the greatest impact on operations. 

In addition to broader scope, a higher degree of fidelity would support stronger claims about the 
CATFM concept of operations. A more sophisticated flight model would eliminate many simplifying 
assumptions, such as simplified schedules, and route capacities in lieu of sector capacities. Modeling 
organizational roles and concentrating on interactions at the level of individual people would show the 
complexity of the proposed work practice and lead to more accurate characterizations of workload. 
Interviews with subject matter experts, case studies, and additional observations of work practice will yield 
insight as to how these processes work today. 
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The results from our initial experiments can be used to guide refinements to the concept of operations 
and develop policies that are more likely to be successful. Further experimentation with the Equitable 
approach in a wider array of situations is needed to evaluate its suitability. Additionally, more complex 
ATFM approaches and airline strategies may yield better overall solutions. Identifying likely airline 
strategies is of great importance, but difficult. Since the situations we are simulating are characteristic of 
future operations, rather than today’s operations, airlines may not have developed appropriate strategies, 
and if they have, they may not be willing to share them. 

Building a model of future operations is difficult at any stage of development. Our approach has been to 
build and validate a model of current operations, and then to modify that model to fit the future concept. 
Even validating the current model is a challenge, given the complexity of operations. Modifying a model of 
current operations to yield to a model of future operations introduces uncertainty. We have dealt with this 
by simulating a variety of possible actions, essentially modeling several possibilities. Game theory can be 
utilized to develop likely strategies and to analyze properties of the system as a whole. Approaches to 
traffic management problems in other domains may translate to ATFM, and vice versa. 
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8. Additional Reading 
The Brahms simulation environment has its own language (Hoof & Sierhuis, 2007), which is similar but 

distinct from other belief, desire, and intent frameworks (Sierhuis, 2007). This representation has been 
developed to support the simulation of work practice (Sierhuis & Clancey, 2002), a major application of 
Brahms technology. The theoretical basis of Brahms is related to that of situated cognition (Clancey, 
2002). The Brahms tool set, simulation environment and additional information are publicly available 
from the Brahms website (Agent iSolutions). 

Agent based modeling and simulation and agent-based techniques have been applied to various aspects 
of AOC operations. Pujet et al. have developed a simulation of the United Airlines AOC, (Pujet, Feron, & 
Rakhit, 1998), modeling each AOC employee as a multi-class queueing server. This model was used to 
track task execution information, namely which entities performed which task at any given point at time, 
with the goal of supporting timely decision making. Castro and Oliveira have developed a multi-agent 
system to handle disruptions in operations by reallocating crew (Castro & Oliveira, 2007). Various agents 
using different methods problem-solving methods compete to find the best solution; in simulation, this 
approach produced better solutions that current human operators. 

Agent-based solutions have been proposed to solve other areas of ATFM. Tumer and Agogino have 
developed a multi-agent algorithm for ATFM (Tumer & Agogino, 2007). They use a Monte-Carlo 
simulation to estimate the congestion within the NAS, based on agents’ actions to speed up or slow down 
traffic. These agents use reinforcement learning to set the separation between airplanes in order to manage 
the congestion. OASIS is an agent-based system developed to maximize airport arrival throughput by 
managing aircraft arrival and runway utilization (Ljunberg & Lucas, 1992). Various functions of ATC 
Tower operations are managed by agents in OASIS, and are implemented in the Procedural Reasoning 
System (Ingrand, Georgeff, & Rao, 1992). Jonker, Meyer, and Dignum have also advocate the use of 
multiagent systems in the ATC Tower operations (Jonker, Meyer, & Dignum, 2005). They describe a 
market-based control mechanism, and analyze its usage from a game-theoretical perspective. 

Agent-based modeling and simulation has also been used to study the effect of increased volume and 
independent choice in other forms of traffic. A simulation of projected traffic in the seaport of Rotterdam 
estimated the effect of increased traffic in terms of delay (Ruit, Schuylenburg, & Ottjes, 1995). Automobile 
traffic has been simulated fairly extensively; of particular relevance to this book chapter are those focused 
on route selection. Klügl and Bazzan examined how individual drivers could learn to prefer certain routes 
and how forecasts of traffic influenced this ability (Klügl & Bazzan, 2004). Interestingly, their study 
showed that the best overall system performance was achieved when most, but not all, drivers had access to 
these traffic forecasts.  Stark et al. (Stark, Helbing, Schönhof, & Holyst, 2006) investigated how 
cooperative strategies could be learned in a route selection context without any communication between 
drivers. 

Several other relevant ATFM simulation environments are not agent-based. The Future ATM Concepts 
Evaluation Tool (FACET) (Bilimoria, Sridhar, Chatterji, Sheth, & Grabbe, 2000) is NASA-developed tool 
for simulating air traffic flow that has been integrated into a commercial product used by nearly all major 
U.S. airlines ("Flight Explorer,"). FACET contains modules that concentrate on trajectory modeling, 
weather modeling, and also contains a model of the airspace structure, including the ARTCC regions, 
sectors, and air routes. CTAS (Erzberger, 1994) is another NASA developed simulation system, with a 
greater emphasis on human in the loop simulations. The Traffic Management Advisor of CTAS is 
particularly relevant from an ATFM perspective, and has been extended to coordinate among multiple 
ARTCCs in the  McTMA system (Hoang, 2004). The Linking Existing On Ground, Arrival and Departure 
project (LEONARDO) evaluated the feasibility of implementing Collaborative Decision Making (CDM) in 
airport processes, both through simulation and a limited deployments (European Commission, 2004). 
LEONARDO integrated decision support tools to promote information sharing among airport stakeholders, 
providing them with early and reliable planning updates. SKATE (Skills, Knowledge, and Attitudes for 
Teamwork), is a model for teamwork measurement developed and used in real-time simulations to validate 
the use of LEONARDO for CDM (EUROCONTROL, 2004). 

The CATFM concept of operations has similarities to the Collaborative Decision-Making (CDM) 
initiative (Ball, Hoffman, Chen, & Vossen, 2000; Federal Aviation Administration), a joint government and 
industry effort was established in the mid-1990s to enhance the interaction and collaboration between the 
ATSP and the users of airspace. CDM deals with improvement of ATFM through better information 
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exchange among the participants of the aviation community. The goal of CDM is to create solutions for 
better utilization of airspace resources through technological and procedural solutions for traffic 
management problems that are encountered in the NAS, without compromising safety. The CDM group 
consists of several sub-groups, e.g., flow evaluation, future concepts, ground delay program enhancements, 
weather evaluation, etc., which deal with various aspects of the air traffic flow management problem. 
Several automation decision support tools have emerged as a result of the CDM effort over the years, 
including the Flight Schedule Monitor (Metron Aviation, 2006a) for managing arrival/departure times, the 
Collaborative Convective Forecast Product (National Oceanic and Atmospheric Administration, 2007) for a 
common assessment of convective weather, the Post Operations Evaluation Tool (Metron Aviation, 2006b) 
for analysis support of NAS operations. 

The Future Concepts Team is another sub-group of the CDM initiative. Over the past few years, the 
FCT group has focused their effort on future of collaboration between the service provider and the users to 
improve efficiency of operations in the NAS. The two main areas of interest are the Integrated 
Collaborative Routing (ICR) (Usmani, 2005) and the System Enhancements for Versatile Electronic 
Negotiation (SEVEN) (Gaertner, Klopfenstein, & Wilmouth, 2007). The ICR effort is geared towards 
better incorporation of user’s preferences for rerouting during events that cause congestion and weather 
related delays. The SEVEN concept is a longer-term initiative which aims to enhance the collaboration 
among the participants to a much higher level than what exists today through use of electronic data 
exchange and to explore the roles and responsibilities of participants, along with identification of associated 
issues and concerns. This enhanced collaboration encompasses all elements of the Flow Constrained Areas 
(for establishing areas of impacted traffic), the Ground Delay Programs and Airspace Flow Programs (for 
managing traffic during bad weather conditions) and Playbook routes (for specific rerouting strategies). 
The premise for Concept SEVEN is for the users to provide prioritized flight lists and enabling them to 
update their options as the constraining events unfold.  

Other concepts of operations have elements that are similar to the CATFM concept of operations. The 
Concept of Operations for the Next Generation Air Transportation System 
(Joint Planning and Development Office, 2007) defines how the air transportation  system shall operate in 
the year 2025, forming a technological baseline to help stimulate the development of policy. The 
International Civil Aviation Organization has also developed requirements for an operational concept in 
2025 (International Civil Aviation Organization, 2003), emphasizing collaborative decision making. It also 
provides a comprehensive view of operations, including airspace design, airport operations and collision 
avoidance, and describes potential benefits and a possible adoption strategy. 

The FAA has developed useful training materials that explains terms, techniques, and programs 
associated with traffic flow management in the NAS (Federal Aviation Administration, 2007). Operational 
details of ATFM, including the ATFM roles and duties at the ATCSCC, ATFM tools, TMI guidelines, and 
overviews of the traffic patterns within each ARTCC are available from the FAA 
(Federal Aviation Administration, 2006). Finally, the Airline Handbook 
(Air Transport Association of America, 2007) provides a brief history of aviation and an overview of 
important aviation topics, including:  the principles of flight, deregulation, the structure of the industry, 
airline economics, airports, air traffic control, safety, security and the environment, and a glossary of 
commonly used aviation terms.  
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